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1 Introduction 
Scalability analysis asks how performance of a cer- 

tain application (or application class) behaves as the 
application problem size increases and the parallel 
architecture executing it increases. Scalability stud- 
ies generally concern very specifically defined applica- 
tions, e.g. , FFT, global reductions, and many other 
precisely defined operations [4]. 

Parallel and distributed discrete-event simulation 
(PDES) is a critical technology for an important class 
of very large complicated simulation models. How- 
ever, with few except,ions, the bulk of empirical work 
in PDES has been on relatively small models. Fur- 
thermore, synchronization behavior is frequently com- 
plicated, which makes it very difficult to analytically 
prove anything about performance executing large 
models on large machines. 

Since the behavior of a PDES system depends very 
much on the model being simulated, one cannot expect 
a scalability analysis to be as precise as that of a very 
specific algorithm. What we can do is look for general 
characteristics of the simulation model and the parti- 
tioning algorithm that yield scalable behavior. That 
identification is one main point of this paper. The scal- 
ability analysis we do is quite simple. The value lies in 
identifying general problem and partition characteris- 
tics which, when taken as starting assumptions, yield 
that straightforward analysis. Our other main point 
is to demonstrate circumstances under which a simple 
conservative synchronization protocol is scalable, and 
to show how to address an inherent tradeoff between 
synchronization overhead and load imbalance. 

In [6] Lubachevsky argues for the scalability of the 
Bounded Lag synchronization protocol. In contrast to 
our analysis here, his involves a more specific model 
of simulation and workload behavior, and does not 
explicitly consider the communication overheads as 
WC do (and as we will see, the communication over- 
heads are the factor most limiting scalability). In [‘i’] 

it is show that the YAWNS protocol keeps overheads 
due to (quote) “synchronization, processor idle time, 
lookahead calculation, and event list manipulation” to 
within a constant factor of optimal. Our model resem- 
bles this in some aspects, but with a focus on commu- 
nication, and identification of the mitigating effects of 
growing the simulation model faster than the architec- 
ture. 

2 Model 
Inspired by VHDL [l] we think of the simulation 

model as a network of entities, connected by chamels. 
Entities communicate exclusively by sending messages 
over channels. A channel may model a communication 
link in the simulation model, or may be a logical con- 
nection that has no physical reflection in the system 
being simulated. In the latter case there is usually 
no simulation delay attributed to the communication, 
in the former case there is. When a delay is associ- 
ated with the action of sending a message, we have 
lookahead. That is to say that when the message is 
initiated by the sender, one can infer that the mes- 
sage will not affect its recipient at least for as long as 
the (simulated) time it takes for the message to reach 
the recipient. 

Without loss of generality we assume that all chan- 
nels have non-zero delays, and are uni-directional. Ag- 
gregation can transform a model with zero delays into 
one without, at the cost of some parallelism. We as- 
sume that every channel delay is at least b > 0 large. 
This is a natural assumption for simulation models of 
physical systems. 

For every entity i we let X, be its average event 
rate, in units of events per unit simulation time. X, 
quantifies the average number of all simulation events 
associated with the entity per unit simulation time. 
For every channel k we let pk be the average number 
of messages sent over the channel per unit simulation 
time. 
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A partition P is a mapping from the set of all en- 
tities into the set of all processors (assumed to be ho- 
mogeneous in processing power). For a given partition 
P we let AJ(P) be the sum of event rates of entities 
assigned to processor j. We assume that the cost of ac- 
cessing the event list is proportional to the logarithm 
of the number of events in the list, which we assume 
is proportional to the aggregate event-rate on the host 
processor. The first assumption follows from the use 
of a standard event list management data structure; 
the second results from the observation that a posted 
event exists in the event-list from its send-time to its 
receive-time. The constant of proportionality depends 
on the average length of simulation time an event re- 
mains in the list. Consequently we model the cost 
of executing an event on processor i under partition 
P as X log A,(P), where X is the problem-dependent 
constant of proportionality. 

A partition induces communication between pro- 
cessors. The rate of communication (in messages per 
unit simulation time) from processor i to j, denoted 
c+(P), is determined by summing the rates pk of 
channels from entities assigned to processor i to en- 
tities assigned to processor j. We assume that the 
cost of sending messages from one processor to an- 
other is no greater than some constant of proportional- 
ity M times the number of messages sent, times some 
function u() of the architecture size. We allow con- 
tention in the communication network (its cost is hid- 
den in M), and assume that architecturally motivated 
growth in contention is captured by u(). We model 
message receipt costs somewhat differently, as mes- 
sages are converted into events, and hence there is a 
cost associated with inserting the new event into the 
event list. The per-message receipt cost is taken to 
be some constant R times the logarithm of the size 
of the event list. Finally, WC define S(P) to be some 

“natural” interval of simulation time during which we 
will assess costs. The dependence on partition P (and 
tacitly, the number of processors) is included for gener- 
ality; different synchronization schemes may give rise 
to different notions of what is “natural”. 

With these definitions and assumptions in hand, 
we model the amount of time (excluding synchroniza- 
tion overhead) required by processor i on a machine of 
N processors, to simulate a epoch of 6(P) simulation 
time units by 

T,(P) L ~(P)(XA,(P) logA, 

+R log At(P) q.t(P))) (1) 

= W%(P)> 

where R,(P) denotes the weighted sum of event rates. 
The “bottleneck” value is the greatest epoch execution 
time : T,,,,(P) = max, { T, (P)}. The bottleneck rate 
sum is 

R,,,(P) = ~nlax(p)lw)> 

and clearly is the rate sum associated with 
sor defining the bottleneck value. 

We assume that all processors execute 

the proces- 

their work 
concurrently, and that any degradation in communi- 
cation concurrency is already captured by constant M 
and function u(). 

The formulation so far has neglected the extra over- 
head induced by synchronization. We model this 
with an “overhead intensity function” S(P) such that 
the synchronization overhead (including blocking) suf- 
fered by a processor in an epoch of b(P) time is the 
product S(P) b(P). F or most synchronization proto- 
cols, quantifying S(P) is extremely difficult. While we 
can and will instantiate it for a simple protocol, our 
purpose now is to identify that overhead so we can rea- 
son about it when we consider scalability issues. The 
total cost of executing S(P) units of simulation time 
is taken to be no greater than T,,,,,(P) + S(P) b(P). 
This measure ignores stochastic effects that variation 
in inter-event time distributions may create. Those 
effects are second-order as compared to effects of load 
imbalance and communication overload, and so in the 
interests of exposition are not treated here. 

A usual measure of assessing parallel performance 
is the processor utilization, defined as the fraction of 
time a processor spends doing work that is done in 
an equivalent serial simulation. Letting A = & Xi be 
the sum of event rates in all entities, the utilization is 
bounded by 

u(p) L 

b(P). A. X log A 

N (LLax(P) + S(P) 6(P)) 
A.XlogA 

= N t (%mxP) + s(P)) 
(3) 

This ratio is obtained by comparing the total execu- 
tion time during one epoch of simulation in a serial 
simulation to the aggregate execution time of all N 
processors in a parallel simulation in that same epoch. 
Speedup can be computed by multiplying utilization 
times the number of processors. If we can show that 
utilization remains bounded from below as the prob- 
lem size and architecture simultaneously grow, then 
we will have demonstrated scalability. 



3 Scalability 
Now we consider how this lower bound on utiliza- 

tion behaves as the simulation model and architec- 
ture size change. First we identify constraints on how 
the simulation model grows, that yields by example 
the possibility of a partitioner finding a partition that 
perfectly balances workload, to within a constant fac- 
tor. With this result we are able to rewrite the lower 
bound on utilization in a way that gathers terms relat- 
ing to load imbalance, communication overhead, and 
synchronization overhead. Next we consider the ef- 
fect of increasing the model size or complexity without 
changing the architecture. We note that even in this 
most benign form of growth, the possibility exists for 
decreasing utilization due to growth in the synchro- 
nization term. Next we consider simultaneous growth 
in problem size and architecture, a consideration that 
reveals the necessity of locality in communication if 
scalability is to be achieved. 
3.1 Maintaining Workload Balance 

The first problem we face is characterizing increas- 
ing simulation model size. Without a specific para- 
metric description of the simulation model, we can 
only identify constraints we place on how a simulation 
model might grow. We let “entity growth function” 
g(N) give the number of entities as a function of the 
number of processors N; for notational simplicity we 
assume that N divides g(N) evenly. We constrain the 
growth of the model by three assumptions: 

Workload Growth Assumptions 

l for every entity i, the event rate X, = O(G), 

where AcN) = C$f’-’ X,, 

l for every entity i, the sum of event rates on all 
outgoing channels is 0(X,), 

l every message received by an entity generates an 
“event” for the entity. 

The first constraint means that the model does not 
grow in such a way that one entity becomes a serial 
bottleneck. If we are to balance workload it is the 
weakest possible constraint, in that it permits one en- 
tity to have a workload so great one might place only 
it on a processor. The second constraint links possi- 
ble communication rates with event processing rates 
in a natural way; the use of the big-oh notation is 
precise-it gives an asymptotic upper bound and says 
nothing at all about any lower bound. The third con- 
straint implies that the earlier bound on event rates 
also bounds incoming communication volume. Un- 
der these conditions, as the model and architecture 

grow, we can always bound the growth of R,,,,(P) 
from above, Showing this requires some work. 

We first show that under the constraints outlined 
above, we can find a partition that balances work- 
load to within a constant factor of optimal, which 
is to say that the largest event rate on any proces- 
sor is O(A(N)/N). To demonstrate this result we 
look at one simple minded way of partitioning and 
show that it achieves this bound. Better partition- 
ers can do at least as well. Given entity event rates 
(say, by observation), we renumber them by order : 

x0 2 Xl 2 . ..&#-I. Consider the partition P’ that 
maps entity i to processor i mod N. It is not difficult 
to see that the sum of event rates on processor 0 is 
maximal. We now consider how to make that sum as 
large as possible if we view the event rates as vari- 
able, subject only to the constraint that the relative 
orderings remain the same. 

Fix Xc. Note that any assignment of ordered event 
rates that maximizes the load given to processor 0 has 
Xr = X2 = f .. = XN, for suppose not. If X, > XN 
and 1 < j < N, we can reassign the arithmetic aver- 
age of rates Xj, Xj+r, . . , AN to entities j through N, 
thereby raising the rate assigned to entity N, which 
is assigned to processor 0. This contradicts the as- 
sumption that the event load assigned to processor 0 
is as high as possible. The same argument applies to 
entities with indices between N + 1 and 2N : they 
are the same as &N, otherwise an averaging process 
can raise /\2N and hence raise the total rate assigned 
to processor 0. Continuing on in this vein we estab- 
lish that if the entities assigned to processor 0 have 
rates Xc, AN, &N, , &(N)-N, then under a rate as- 
signment that maximizes processor O’s load we have 

AcN) > XO + (N - 1) x (AN + XzN +. . . + x~(N)-N). 

Xc is a lower bound on processor O’s load, the product 
involving N - 1 sums a common lower bound on the 
load of all other processors (the bound is not an equal- 
ity because the bound omits one rate-the least one 
for each of the last N - 1 processors). With straight- 
forward algebraic manipulation we establish an upper 
bound on the event rate of the most heavily loaded 
processor: 

A; 5 Xo + 
AcN) - X0 

N-l 

Viewed as a function of X0, we note that the right- 
hand-side is increasing in X0 and so is maximized when 
Aa is as large as it can be. By assumption there is 
a constant CO such that X0 < COA(~)/N for all N, 



whence 

Ab 
A(N) A(N) A(N) 

< co - - 
N “N(N - 1) + N-l 

A(N) A(N) A(N) A(N) 
-- = co N 

“N(N - 1) + N + N(N - 1) 

where in the last step we take CO 2 1, which we can 
do without loss of generality. Thus we have proven 
that the sum of event rates on the most-heavily loaded 
processor is O(AcN)/N). 

If the event rate on each processor is bounded from 
above, then our second and third assumptions allow us 
to bound the cost of sending and receiving messages. 
For if ci = co+1 and Ai 5 c~A(~)/N for all sufficiently 
large N, there are constants c2 and cg such that 

U(N)M C Ci,j(P’) + R . log Ai C cj,z(P’) 

43 t#j 

5 (u(N)M c2 + R c3 log(ci - 
A;’ )) x c$“’ , 

for all sufficiently large N. This then demonstrates 
that 

for all sufficiently large N. 
Substituting this bound on R,,,,(V) into the 

bound given in (3) and performing some re- 
arrangement gives the expression as a lower bound on 
U(P’). Later in the text we refer to this as expres- 
sion (6). 

x log A(N) 
qXlogpy ) + a(N)Mclcz + Rc3c1 log(+) + $& 

.I n 

= CI(X + Rc3)(1 + log( 3,) + a(l;;;:;1 + -$& & 

When parsed, the LHS of expression (6) intuitively 
relates the cost of executing an event in a serial sim- 
ulation to the amortized cost of executing that event 
in a parallel simulation. The denominator reflects the 
smaller cost of executing the event in parallel, reflects 
bounded per-event average communication overhead 
and bounded per-message average overhead due to a 
message receipt, and gives the average per-event syn- 
chronization cost. The RHS collects terms for later 
analysis. 

A precise definition of scalability is more technical 
than it is informative. However, if we are interested in 

scalability then we are imerested in how performance 
“projects” as the model problem grows and/or as the 
simulation engine used grows. There are a number of 
different scenarios, which we now consider. 

3.2 Increasing Model Complexity 
One way a model “grows” is if the events become 

more complex, if they involve more computation be- 
cause the model they describe has increasingly more 
detail. If that complexity does not engender more 
communication or synchronization overhead, in ex- 
pression (6) the increase in model complexity mani- 
fests itself as an increase in the magnitude X. All 
other things being equal, this increases the value of 
U(P), so a change of this type “scales”. 

The result above rests on a strong assumption 
though, that the increasing model complexity does not 
affect the synchronization overhead. It well may. In 
an optimistic protocol the state-saving cost may rise 
and/or the risk of rollback increase. In a conserva- 
tive protocol more model complexity generally implies 
smaller lookahead, which would also serve to increase 
the synchronization overhead. In this more compli- 
cated scenario, the bound on U(P) can increase or de- 
crease, depending on how quickly S(P) changes with 
increases in X. Given a mathematical form for S(P) 
one could express the condition formally using deriva- 
tives. For now we just observe the potential for linkage 
between model complexity and synchronization over- 
head. 

Another way a model might grow is if the event 
rates increase, without affecting X. This is a fairly 
typical mode of model growth: given a submodel tem- 
plate (e.g. an ATM switch), one “grows” the model 
by replicating the subrnodel and inter-connecting the 
replications. This translates into an increase in AcN), 
which serves to increase the bound on U(P’). How- 
ever, in principle the synchronization cost per event 
might again rise. For instance, in an optimistic proto- 
col the threat of rollback might be larger-especially 
if the increasing number of events exacerbates a less- 
than-perfectly balanced workload. 

What we can conclude is that if the architecture 
remains constant and the simulation workload is in- 
creased, the utilization may rise, depending on how 
the synchronization overhead behaves as the work- 
load increases. If that overhead does not increase or 
does not increase too fast, then the simulation system 
“scales” 

3.3 Simultaneous Growth in Model and 
Architecture 

Now we consider how functional forms for various 
factors in expression (6) must relate to each other if 



the simulation is to scale. We do so noting that phys- 
ical machine limits exist. In practice this means that 
subject to upper bounds on N and problem size, we 
consider how problem size must grow with respect to 
N if the bound in expression (6) is to be kept from 
degrading. In particular, we consicler how the ra- 
tios a(N)/ logAcN) and (N/A(N))(S(P’)/(A(N))) are 
to behave as N grows. 

Consider architectural cost u(N) first. Recalling 
that w(N) reflects the average path length of message 
communication, whether or not communication delays 
grow in N depends very much on how elements of the 
model communicate. Local communication patterns 
that are sustained as the model grows and are ex- 
ploited by the partitioner, keeps u(N) constant. How- 
ever, if on average communication must cross the en- 
tire parallel architecture, then u(N) grows in propor- 
tion to network diameter. For a communication archi- 
tecture wit,h an underlying hypercube this would be 
u(N) 0: log N; for a mesh or torus in d dimensions we 
have a(N) (x N IId. In the former case, if A(“‘) grows 
in proportion to N (as it will if the average work- 
load per processor is kept constant as the architecture 
grows) then the ratio a(N)/ log AcN) increases in N 
but approaches a fixed upper bound, which means in 
our asymptotic analysis we can ignore the communi- 
cation term. In the general case, in order to keep the 
communication term from growing, AcN) must grow 
faster than dots N, specifically, a,(N) = O(log AcN)). 
While we can increase problem size faster than archi- 
tecture size, ultimately we exhaust memory. Whether 
one does this before exhausting the supply of avail- 
able processors is a matter of constants of proportion- 
ality. The key point is that if a(N) grows faster than 
log N, to maintain a consistent level of performance, 
the problem size must grow faster than the architec- 
ture. Tbr relationship n(N) = O(log AcN)) describes 
precisely the needed rate of growth. 

Now consider synchronization costs. If AcN) grows 
in proportion to N, then to keep the synchronization 
term in expression (6) from growing it is necessary 
that S(P) not grow any faster than log N. Alter- 
natively, if S(P) g rows faster than log N, then AcN) 
must grow fast enough so that AcN) log AcN) keeps 
pace with N S(P’). Without a functional form for 
S(P’) it is impossible to assert whether this condi- 
tion is met or not. However, for an important class 
of synchronization algorithms we can ascribe form to 
S(P’), for all conservative window-based algorithms 
(e.g. [7, 2, 51) rely in the end on barrier synchro- 
nizations or global reductions, which can usually be 
implemented with cost proportional to the diameter 

of the architecture. In the case of a hypercube-based 
design, S(P’) c( log N, and the synchronization term 
is bounded. 

4 Scalability and Optimization of QS 
Next we add some concreteness to this discussion 

by looking at a specific synchronization protocol we 
call @anta Synchon,ization, or QS. First we show 
that the method can scale, depending on the assumed 
workload growth. Second, we consider how to deal 
with an inherent tradeoff between load imbalance and 
synchronization overhead. 

4.1 QS Scales 
Our workload model lends itself to coordination 

through a very simple synchronization mechanism. 
Recall that every channel is assumed to have a de- 
lay that is bounded sharply from below by some 6. If 
we synchronize all processors every 6 quanta of simu- 
lation time, we are assured that no event occurring in 
one processor can affect the state of another processor 
in that same time quanta. QS is the protocol used 
to synchronize the Wisconson Window Tunnel[9]. A 
variant of it synchronizes Nops [8]. 

For QS we can quantify the per-unit simulation 
overhead term S(V) from expression (6): S(Y) 0: 
r(N)/G’(P’), where r(N) is the cost of implementing 
a min-reduction on N processors. r(N) depends on 

the topology of the interconnection network, in the 
same way that function a(N) does, discussed earlier. 
Here we explicitly choose the time-quanta to be the 
minimum channel delay among all channels cut by the 
partition. 

In order to keep the synchronization term of expres- 
sion (6) from growin g, we require that its denominator 
dominate its numerator, which is to say t,here is a con- 

st,ant cd such that for all N 

N r(N) 5 c4 A(‘+‘) b(P’) logA(N) 

Rewriting, we require that 

A(N) 
r(N) 5 c4. N. 6(V). logUN) 

If the underlying network has logarithmic diameter, 
then r(N) grows no faster than log N, and so long as 
AcN) grows linearly in N this relationship is satisfied. 
If r(N) grows faster than log N, the relationship in- 
dicates just how fast AcN) must grow as a function of 
N. For instance, if r(N) cx N”” (as in a mesh connec- 
tion architecture) then if average processor workload 



AcN)/N grows as fast as Nil”/ logAcN), then the syn- 
chronization overhead is bounded. 

Assuming the “worst case” that a(N) cx r(N) 
(locality of commui~ication can reduce a(N)), we 
see that the communication requirement of u(N) = 
O(logA(N)) is more stringent than the synchroniza- 
tion requirement above. If communication scales, then 
so does QS synchronization. 

Pulling all of this together, we’ve demonstrated 
that a simulation model that obeys the Workload 
Growth Assumptions detailed in subsection 3.1, syn- 
chronized using QS, can be scalable so long as the 
growth of simulation model as a function of architec- 
ture size is sufficient to dampen both the communica- 
tion overhead and the synchronization overhead. The 
needed growth is never more than log AcN) ix u(N), 
and may be considerably less. 

4.2 The Synchronization / Load Imbal- 
ance Tradeoff 

In the problem class under consideration, QS ex- 
ploits lookahead obtained from minimum channel de- 
lays on channels that are “cut” by the partition. The 
larger the minimum such channel delay, the less fre- 
quently the processors must synchronize. This cre- 
ates a trade-off between synchronization overhead and 
load imbalance. The larger we insist that the mini- 
mum channel delay be on a cut channel, the fewer op- 
tions the partitioner has, because entities connected 
by channels with smaller delays must be co-resident. 
The fewer options it has, the worse the load imbalance 
will be. We point out here how a partitioning strategy 
can address this tradeoff efficiently. 

Imagine that we insist on having the minirnum cut 
channel delay be at least d, and will use d as the syn- 
chronization quanta. Given a partitioning algorithm, 
we can find a partitioning Pd by first collapsing the 
network of entities, merging any two entities with a 
minimum channel delay between them less than d. 
Applied transitively, one creates a smaller network, 
but one in which all exposed channels have minimum 
delay at least as large as d. The partitioner can then 
be applied to that reduced network. 

We assume, not unreasonably, that the larger d is, 
the worse load imbalance under Pd will be. Using the 
notation of section 2, this means that R,,,,,(pd) (the 
execution time per unit simulation time) increases in 
d. However, the synchronization cost per unit simula- 
tion time goes down as d goes up. Ultimately we seek 
the partition that minimizes the overall performance 
rate R ,,,X(Pd) +r(N)/d, where r(N) is the delay cost 
of implementing the global synchronization. 

For a given partitioning algorithm, we can find 

the partition that addresses this tradeoff nearly op- 
timally, provided we can assume that if d < d’, then 
Rrllax(Pd) 5 R,,,(Pd,). Our notion of “best” will 
be approximate, in the following sense. We will dis- 
cretize the range of potential values of R,,,(Pd) and 
solve an optimization problem, finding a solution that 
is optimal up to the granularity of that discretization. 
Given that we are interested in balancing load imbal- 
ance against synchronization overhead, and the syn- 
chronization cost r(N) is known, we will choose a dis- 
cretization unit that is some fixed fraction of r(N), 
e.g., A = r(N)/F, for some F. 

Our strategy is to craft a “probe” function that, 
for a given level of performance, determines whether 
it is possible to partition the network and achieve that 
performance. We then search a space of discretized 
performance levels using binary search, at each level 
applying the probe function to determine feasibility. 

To motivate the searching approach consider the 
following. If we apply the partitioning algorithm with- 
out any constraints whatsoever on the channels, we 
will find the partition that best balances the work- 
load (“best” subject to the use of the particular par- 
titioning algorithm, that is). The execution time per 
unit simulation time of that partition (Pa) is com- 
prised of two parts, the execution time for event pro- 
cessing (and communication) and the execution time 
for synchronization: R,,,,,(Po) + r(N)/G’(Po). To ex- 
press the event processing component as a multiple 
of the performance level discretization we compute 
no = [RlllaX(Pc)/Al, so that R,,,,,(%) E noA. This 
expression is a lower bourld on the optimal cost per 
unit simulation time (because R,,,,,(Po) is minimal); 
the full cost of partition PO is an upper bound on 
the optimal achievable performance. We thus have a 
closed range of performance values, discretized to res- 
olution A. We denote the number of such levels by 

L(A) = ,R1”“” (PO) + T(N)/W’O) - RmxPo), + 1 
A 

Now imagine the existence of a probe function 
that takes a target performance level and determines 
whether it is possible for the partitioning to achieve 
that level. We can do a binary search over the dis- 
cretized space and so determine the lowest achievable 
cost, up to the resolution of the discretization. 



We now consider how to construct a probe func- 
tion. Let nA be in the range of performance lev- 
els. One possible way to achieve this level would be 
if the partitioner was able to achieve execution cost 
R,,,,(P,) = R,,,(Po) for d large enough to drive 
the amortized synchronization cost down to the level 
needed. We consequently solve for dl in equation 

nA = noA + r(N)/dl, 

giving dl = r(N)/((n - na)A). Since in practice 
R,,,,,(P,) may increase as d increases, we know that 
to achieve the desired level of performance, it is nec- 
essary (but not sufficient) to restrict the minimum 
channel delay to be as large as dl. Given dl we 
contract the simulation model to eliminate channels 
with minimum delays smaller than dr, and apply 
the partitioning algorithm to the result. This yields 
a partition PI with execution cost per unit simula- 
tion time of R l,,ax(Pl) + r(N)/dl. We discretize the 
workload level to niA by solving for ni in equation 

711 = fRmax(P~)/Al. 0 ne of three conditions holds at 
this point: 

niA + r(N)/dl = nA. The probe has deter- 
mined that the sought performance level can be 
achieved, and thus returns value true. 

ni > n. The sought performance level can never be 
achieved, because already the cost without syn- 
chronization exceeds the target cost, and can only 
get worse by increasing the minimum channel de- 
lay. In this case the probe returns value false. 

nrA+r(N)/di > nA. We cannot yet tell whether the 
sought level of performance is possible. We cm 
tell that if it is possible, then it is only possible 
by increasing the minimum channel delay. Note 
that no < nr < n in this case. 

Should the last condition occur, we repeat the pro- 
cess, first solving for d2 in the equation 

nA = niA + r(N)/dz, 

and using that solution to compute partition P,, with 
approximated cost nzA + r(N)/ds. We run this solu- 
tion through the same set of three tests. This cycle 
repeats, every cycle looking to “decay” the synchro- 
nization term from the previous iteration’s solution 
to achieve the goal, until the probe returns true or 
false. Every step of the process, the coefficient of A 
in the examined solution increases. This shows that 
the probe must terminate, for eventually the sought 
performance will be achieved or the coefficient will ex- 
ceed n. 

In any given probe, no more than L(A) iterations of 
the inner loop will be executed, and there are log L(A) 
calls to the probe function. Each iteration of the inner 
loop of a probe call involves collapsing the network 
and calling the partitioner. The cost of these activities 
depends on the partitioner; assuming that the cost of 
partitioning dominates that of collapsing the network, 
we see that we can deal with the tradeoff between 
synchronization overhead and load imbalance at a cost 
that is O(L(A) logL(A)) t imes the cost of calling the 
partitioner once. 

Is the extra effect worth the trouble? It all de- 
pends. If the unconstrained partition discovers a par- 
tition such that the synchronization cost is only 5% 
of the total cost, then no amount of effort is go- 
ing to improve performance by more than 5%. If 
on the other hand the synchronization cost domi- 
nates the total cost, then the effort may be well 
spent. Suppose the synchronization overhead is 10 
times that of the execution time, i.e., R,,,(Po) = 

~(N)/(lOW’o)). W e might choose a workload reso- 
lution of A = ~(N)/(106(Pe)), to allow the poten- 
tial for a lo-fold reduction in overall cost. This gives 
L(A) = 11, so the factor L(A) logL(A) is not so 
onerous, especially considering that the assumption 
of making L(A) calls to the partitioner on each probe 
is quite pessimistic. 

5 Event List Costs Revisited 
Up until now we have assumed that the cost of 

executing an event is proportional to the logarithm 
of the size of the event list. Adherents of the calen- 
dar queue method (31 claim an average case constant 
per-event complexity, although in our experience, it 
is altogether too easy to degrade into linearly increas- 
ing performance owing to disadvantageous bin widths. 
The scalability of the calendar queue mechanism in 
our context is not clear. 

However, in related work we have shown how to ex- 
ploit the minimal channel delay present in the assumed 
model, to avoid the calendar queue’s shortcomings [8]. 
The key difference is that we need not do linear inser- 
tions once a bin is found. This keeps accesses to the 
global event list at O(1) on average; the remaining 
per-event cost increases as a function of an entity’s 
fan-in, essentially a “small” event list, kept ordered, 
is associated with each entity in each window. This 
observation forces us to reexamine the present model 
and analyze its effects on scalability. 

Let us assume that the simulation model grows in 
a way that average entity fan-in does not increase. If 
a serial simulator is clever enough to exploit the min- 
imum channel delay as does Naps, then the LHS of 

IO 



expression (6) changes by replacing all log terms with 
constants. The denominator of the RHS has a con- 
stant term for execution costs, a term multiplied by 
a(N) for communication costs, and (N/AcN))S(P’) as 
the synchronization cost. The only way to keep the 
communication term from growing without bound is 
if the simulation model and partitioner can keep a(N) 
below a fixed upper bound. The only way the syn- 
chronization term can be kept from growing without 
bound is if the workload grows fast enough so that 
iv/A(N) cx S(P’). It is also possible to achieve scala- 
bility if a(N) grows but the workload grows so much 
faster than N that the sum of communication and 
synchronization costs remain bounded. 

Reduction of the event-list cost is a sort of good 
news and bad news deal. It makes a real difference on 
performance of very large models-but makes scalabil- 
ity more challenging because both the serial and paral- 
lel versions can be improved. It remains an open ques- 
tion whether it is “fair” to assume that a serial version 
would emulate the asymptotically superior parallel ap- 
proach. 

6 Conclusions 
As parallel discrete-event simulation becomes in- 

creasingly important to the solution of very large sys- 
tems design problems, it becomes increasingly criti- 
cal to establish whether PDES technology will scale 
up with increasing problem size and architecture. In 
this paper we address the problem in a general set- 
ting, provide a resounding conclusion: maybe. To 
scale requires that the simulation model not grow in 
ways that defeat an ability to load balance, and that 
do not overwhelm any one processor with communi- 
cation. It requires an architecture that scales as well. 
It requires a partitioner that balances workload and 
exploits locality of communication. The specific par- 
tition strategy we examined is very simple, our point 
is not to promote its specific use. Our point is that 
scalability is possible using it, and hence if a more re- 
fined partitioner can balance workload and rnaintain 
locality of communication, then simulations built us- 
ing it will scale also. If these conditions apply, then 
we demonstrate by example a simple conservative syn- 
chronization protocol, QS, that scales. 

Using QS we then examine the trade-off between 
load-imbalance and synchronization overhead. We 
show how to efficiently manage that trade-off by prob- 
ing the space of potential restricted partitions. 

References 
[l) Peter J. Ashenden. The Designer’s Guide to 

VHDL. Morgan Kaufmann, San Fransico, CA, 

PI 

PI 

PI 

PI 

[61 

PI 

PI 

PI 

1996. 

R. Ayani. A parallel simulation scheme based on 
distances between objects. In Distributed Simula- 
tion 1989, pages 113118. SCS Simulation Series, 
1989. 

R. Brown. Calendar Queues: a fast O(1) pri- 
ority queue implementation for the simulation 
event set problem. Communications of the ACM, 
31(10):1220-1227,1988. 

A. Grama, A. Gupta, and V. Kumar. Isoefficiency 
function: A scalability metric for parallel algo- 
rithms and architectures. IEEE Parallel and Dis- 
tributed Technology, 1(3):12-21, August 1993. 

B.D. Lubachevsky. Efficient distributed event- 
driven simulations of multiple-loop networks. 
Communications of the ACM, 32(1):111-123, 
1989. 

B.D. Lubachevsky. Scalability of the bounded 
lag distributed discrete-event simulation. In Dis- 
tributed Simulation 1989, pages 100-107. SCS Sim- 
ulation Series, 1989. 

D. Nicol. The cost of conservative synchronization 
in parallel discrete-event simulations. Journal of 
the ACM, 40(2):304-333, April 1993. 

A. Poplawski and D. Nicol. Nops: A conservative 
parallel simulation engine for TeD. 

S. Reinhardt, M. Hill, J. Larus, A. Lebeck, 
J. Lewis, and D. Wood. The Wisconsin Wind Tun- 
nel: Virtual prototyping of parallel computers. In 
Proceedings of the 1993 ACM SIGMETRICS Con- 
ference, pages 48-60, Santa Clara, CA., May 1993. 

11 


